Showing posts with label Mars. Show all posts
Showing posts with label Mars. Show all posts

Friday, 6 March 2015

Mars: The planet that lost an ocean's worth of water

This artist's impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars's northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres

A primitive ocean on Mars held more water than Earth’s Arctic Ocean, and covered a greater portion of the planet’s surface than the Atlantic Ocean does on Earth, according to new results published today. An international team of scientists used ESO’s Very Large Telescope, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility, to monitor the atmosphere of the planet and map out the properties of the water in different parts of Mars’s atmosphere over a six-year period. These new maps are the first of their kind.
The results appear online in the journal Science today.
About four billion years ago, the young planet would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars's northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.
"Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space," said Geronimo Villanueva, a scientist working at NASA's Goddard Space Flight Center in Greenbelt, Maryland, USA, and lead author of the new paper. "With this work, we can better understand the history of water on Mars."
The new estimate is based on detailed observations of two slightly different forms of water in Mars's atmosphere. One is the familiar form of water, made with two hydrogen atoms and one oxygen, H2O. The other is HDO, or semi-heavy water, a naturally occurring variation in which one hydrogen atom is replaced by a heavier form, called deuterium.
As the deuterated form is heavier than normal water, it is less easily lost into space through evaporation. So, the greater the water loss from the planet, the greater the ratio of HDO to H2O in the water that remains.
The researchers distinguished the chemical signatures of the two types of water using ESO's Very Large Telescope in Chile, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility in Hawaii. By comparing the ratio of HDO to H2O, scientists can measure by how much the fraction of HDO has increased and thus determine how much water has escaped into space. This in turn allows the amount of water on Mars at earlier times to be estimated.
In the study, the team mapped the distribution of H2O and HDO repeatedly over nearly six Earth years -- equal to about three Mars years -- producing global snapshots of each, as well as their ratio. The maps reveal seasonal changes and microclimates, even though modern Mars is essentially a desert.
Ulli Kaeufl of ESO, who was responsible for building one of the instruments used in this study and is a co-author of the new paper, adds: "I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometres away!"
The team was especially interested in regions near the north and south poles, because the polar ice caps are the planet's largest known reservoir of water. The water stored there is thought to document the evolution of Mars's water from the wet Noachian period, which ended about 3.7 billion years ago, to the present.
The new results show that atmospheric water in the near-polar region was enriched in HDO by a factor of seven relative to Earth's ocean water, implying that water in Mars's permanent ice caps is enriched eight-fold. Mars must have lost a volume of water 6.5 times larger than the present polar caps to provide such a high level of enrichment. The volume of Mars's early ocean must have been at least 20 million cubic kilometres.
Based on the surface of Mars today, a likely location for this water would be the Northern Plains, which have long been considered a good candidate because of their low-lying ground. An ancient ocean there would have covered 19% of the planet's surface -- by comparison, the Atlantic Ocean occupies 17% of the Earth's surface.
"With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer," said Michael Mumma, a senior scientist at Goddard and the second author on the paper.
It is possible that Mars once had even more water, some of which may have been deposited below the surface. Because the new maps reveal microclimates and changes in the atmospheric water content over time, they may also prove to be useful in the continuing search for underground water.

Story Source:
The above story is based on materials provided by European Southern Observatory - ESO. Note: Materials may be edited for content and length.

Journal Reference:
  1. G. L. Villanueva, M. J. Mumma, R. E. Novak, H. U. Käufl, P. Hartogh, T. Encrenaz, A. Tokunaga, A. Khayat, M. D. Smith. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science, 2015 DOI: 10.1126/science.aaa3630

Tuesday, 27 January 2015

Helicopter could be 'scout' for Mars rovers

A proposed helicopter could triple the distances that Mars rovers can drive in a Martian day and help pinpoint interesting targets for study

Getting around on Mars is tricky business. Each NASA rover has delivered a wealth of information about the history and composition of the Red Planet, but a rover's vision is limited by the view of onboard cameras, and images from spacecraft orbiting Mars are the only other clues to where to drive it. To have a better sense of where to go and what's worth studying on Mars, it could be useful to have a low-flying scout.

Enter the Mars Helicopter, a proposed add-on to Mars rovers of the future that could potentially triple the distance these vehicles currently drive in a Martian day, and deliver a new level of visual information for choosing which sites to explore.
The helicopter would fly ahead of the rover almost every day, checking out various possible points of interest and helping engineers back on Earth plan the best driving route.
Scientists could also use the helicopter images to look for features for the rover to study in further detail. Another part of the helicopter's job would be to check out the best places for the rover to collect key samples and rocks for a cache, which a next-generation rover could pick up later.
The vehicle is envisioned to weigh 2.2 pounds (1 kilogram) and measure 3.6 feet (1.1 meters) across from the tip of one blade to the other. The prototype body looks like a medium-size cubic tissue box.
The current design is a proof-of-concept technology demonstration that has been tested at NASA's Jet Propulsion Laboratory, Pasadena, California.


Story Source:
The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.

Tuesday, 20 January 2015

HiRISE camera spots long-lost space probe on Mars

Tucked away in its entry shell, Beagle 2 descends onto Mars


The UK-led Beagle 2 Mars Lander, thought lost on Mars since 2003, has been found partially deployed on the surface of the planet, ending the mystery of what happened to the mission more than a decade ago.
Images taken by the HiRISE camera on NASA's Mars Reconnaissance Orbiter, or MRO, and initially searched by Michael Croon of Trier, Germany, a former member of the European Space Agency's Mars Express operations team at the European Space Operations Centre, have identified clear evidence for the lander and convincing evidence for key entry and descent components on the surface of Mars within the expected landing area of Isidis Planitia, an impact basin close to the equator.
This finding shows that the Entry, Descent and Landing, or EDL, sequence for Beagle 2 worked and the lander did successfully touchdown on Mars on Christmas Day 2003.
"We've been looking for all the past landers with HiRISE, this is the first time we found one that didn't send a signal after it landed," said Alfred McEwen, principal investigator of the HiRISE mission and professor in the UA's Lunar and Planetary Lab. "If the landing sequence works correctly, the probe sends a radio signal, and you can use that to pinpoint where it is coming from, even if it broadcasts only very briefly. But in the case of Beagle 2, we didn't get anything. All we had to go by was the target landing area."
Since the loss of Beagle 2 following its landing timed for Dec. 25, 2003, a search for it has been underway using images taken by the HiRISE camera on the MRO. HiRISE has been taking occasional pictures of the landing site in addition to pursuing its scientific studies of the surface of Mars. The planned landing area for Beagle 2 at the time of launch was approximately 170 x 100 kilometers (105 x 62 miles) within Isidis Planitia. With a fully deployed Beagle 2 being less than a few meters across and a camera image scale of about 0.3 m (10 inches), detection is a very difficult and a painstaking task. The initial detection came from HiRISE images taken on Feb. 28, 2013, and June 29, 2014 (Images ESP_037145_1915 and ESP_030908_1915). Croon had submitted a request through the HiWISH program, which allows anyone to submit suggestions for HiRISE imaging targets.
"He found something that would be a good candidate at the edge of the frame," McEwen said. "But contrast was low in the first image, and it was difficult to convince yourself something special was there."
The team acquired several more images, which showed a bright spot that seemed to move around.
"That was consistent with Beagle 2," McEwen said. "Because its solar panels were arranged in petals, each one would reflect light differently depending on the angles of the sun and MRO, especially if the lander was resting on sloping ground."
The imaging data may be consistent with only a partial deployment of Beagle 2 following landing, which would explain why no signal or data was received from the lander, as full deployment of all solar panels was needed to expose the RF antenna, which would transmit data and receive commands from Earth via orbiting Mars spacecraft.
The HiRISE images reveal only two or three of the motorized solar panels, but that may be due to their favorable tilts for sun glints. According to the UK Space Agency, if some panels failed to deploy, reasons could include obstruction from an airbag remaining in the proximity of the lander due to gas leakage, or a damaged mechanism or structure or broken electrical connection, perhaps due to unexpected shock loads during landing. The scenario of local terrain topology, including rocks blocking the deployment, is considered unlikely given images of the landing area, which show few rocks, but this cannot be ruled out. Further imaging and analysis is planned to narrow the options for what happened. Slope and height derived from the HiRISE images show that Beagle 2 landed on comparable flat terrain with no major hazards.
The discovery benefited from an additional image clean-up step that the HiRISE team has been testing, which removes very subtle electronic noise patterns that have to do with the way the instruments work on the MRO. Sarah Sutton, a HiRISE image processing scientist at LPL who was involved in processing the images that revealed the marooned lander, pointed out that this process is an additional step to make the images "just a little bit clearer."
"We have to be really careful not to modify the science data," said Sutton, who received her bachelor's degree in mathematics from the UA. "We do not make any enhancements or modify the images. All we do is eliminate subtle artifacts from high-frequency electronic noise. The untrained eye would not see it, but I see it.
"When we look at objects that are at the limit of the resolution of HiRISE, like Beagle 2, every bit of image clean-up helps."
Beagle 2 was part of the ESA Mars Express Mission launched in June 2003. Mars Express is still orbiting Mars and returning scientific data on the planet. Beagle 2 was successfully ejected from ESA's Mars Express spacecraft on the Dec. 19, 2003 -- 5.75 days away from Mars and Mars Express' engine firing and orbital injection.
Beagle 2 inspired many in the general public and led indirectly to the UK becoming a leading member of ESA's Aurora program and the UK-led ESA ExoMars mission. This rover will explore Mars in 2019, drilling up to 2 meters (6 feet) beneath the soil to explore the geochemistry and mineralogy of Mars and search for potential evidence of past life.

Story Source:
The above story is based on materials provided by University of Arizona. The original article was written by Daniel Stolte. Note: Materials may be edited for content and length.

Friday, 26 December 2014

Scientists 'map' water vapor in Martian atmosphere | sci-english.blogspot.com

This graphs shows the latitudinal distribution of humidity in Mars' atmosphere during the year according to data collected by the SPICAMInfrared instruments | sci-english.blogspot.com

Russian scientists from the Space Research Institute of the Russian Academy of Sciences and the Moscow Institute of Physics and Technology (MIPT), together with their French and American colleagues, have created a 'map' of the distribution of water vapour in Mars' atmosphere. Their research includes observations of seasonal variations in atmospheric concentrations using data collected over ten years by the Russian-French SPICAM spectrometer aboard the Mars Express orbiter. This is the longest period of observation and provides the largest volume of data about water vapour on Mars.
The first SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars) instrument was built for the Russian Martian orbiter Mars 96, which was lost due to an accident in the rocket launcher.
The new updated version of the instrument was built with the participation of the Space Research Institute as part of the agreement between RosCosmos and the French space agency CNES for the Mars Express orbiter. The apparatus was launched on June 2, 2003 from the Baikonur Cosmodrome using a Russian Soyuz rocket launcher with a Fregat propulsion stage. At the end of December 2003, Mars Express entered a near-Mars orbit and since then has been operating successfully, collecting data on the planet and its surroundings.
Staff of the Space Research Institute and MIPT, including Alexander Trokhimovsky, Anna Fyodorova, Oleg Korablyov and Alexander Rodin, together with their colleagues from the French laboratory LATMOS and NASA's Goddard Center, have analysed a mass of data obtained by observing water vapour in Mars' atmosphere using an infrared spectrometer that is part of the SPICAM instrument over a period of five Martian years (about 10 Earth years as a year on Mars is equal to 1.88 Earth years).
Conditions on Mars -- low temperatures and low atmospheric pressure -- do not allow water to exist in liquid form in open reservoirs as it would on Earth. However, on Mars, there is a powerful layer of permafrost, with large reserves of frozen water concentrated at the polar caps. There is water vapour in the atmosphere, although at very low levels compared to the quantities experienced hereon Earth. If the entire volume of water in the atmosphere was to be spread evenly over the surface of the planet, the thickness of the water layer would not exceed 10-20 microns, while on Earth such a layer would be thousands of times thicker.
Data from the SPICAM experiment has allowed scientists to create a picture of the annual cycle of water vapour concentration variation in the atmosphere. Scientists have been observing the atmosphere during missions to Mars since the end of the 1970s in order to make the picture more precise, as well as traceits variability.
The content of water vapour in the atmosphere reaches a maximum level of 60-70 microns of released water in the northern regions during the summer season. The summer maximum in the southern hemisphere is significantly lower -- about 20 microns. The scientists have also established a significant, by 5-10 microns, reduction in the concentration of water vapour during global sandstorms, which is probably connected to the removal of water vapour from the atmosphere due to adsorption processes and condensation on surfaces.
"This research, based on one of the longest periods of monitoring of the Martian climate, has made an important contribution to the understanding of the Martian hydrological cycle -- the most important of the climate mechanisms which could potentially support the existence of biological activity on the planet," said co-author of the research Alexander Rodin, deputy head of the Infrared Spectroscopy of Planetary Atmospheres Laboratory at MIPT and senior scientific researcher at the Space Research Institute.

Story Source:
The above story is based on materials provided by Moscow Institute of Physics and Technology. Note: Materials may be edited for content and length.

Journal Reference:
  1. Alexander Trokhimovskiy, Anna Fedorova, Oleg Korablev, Franck Montmessin, Jean-Loup Bertaux, Alexander Rodin, Michael D. Smith. Mars’ water vapor mapping by the SPICAM IR spectrometer: Five martian years of observations. Icarus, 2014; DOI: 10.1016/j.icarus.2014.10.007


Dust devil and the details: Spinning up a storm on Mars | sci-english.blogspot.com

A dust devil reaching half a mile above the plain of Amazonis Planitia is twisted by the wind at different levels above the surface | sci-english.blogspot.com
Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).
Early results from this research in UAH's Atmospheric Science Department are scheduled for presentation today at the American Geophysical Union's fall meeting in San Francisco.
"To start a dust devil on Mars you need convection, a strong updraft," said Bryce Williams, an atmospheric science graduate student at UAH. "We looked at the ratio between convection and surface turbulence to find the sweet spot where there is enough updraft to overcome the low level wind and turbulence. And on Mars, where we think the process that creates a vortex is more easily disrupted by frictional dissipation -- turbulence and wind at the surface -- you need twice as much convective updraft as you do on Earth."
Williams and UAH's Dr. Udaysankar Nair looked for the dust devil sweet spot by combining data from a study of Australian dust devils with meteorological observations collected during the Viking Lander mission. They used that data and a one-dimensional Mars planetary boundary layer model to find thresholds of the ratio between convection and surface friction velocities that identify conditions conducive to forming dust devils.
While dust devils on Earth are seldom more than meteorological curiosities, on Mars they sometimes grow to the size of terrestrial tornados, with a funnel more than 100 meters wide stretching as much as 12 miles above the Martian surface.
Williams and Nair are looking at the effects dust devils have on lifting dust into the Martian atmosphere. Dust in the Martian air and its radiative forcing are important modulators of the planet's climate.
"The Martian air is so thin, dust has a greater effect on energy transfers in the atmosphere and on the surface than it does in Earth's thick atmosphere," said Nair, an associate professor of atmospheric science. Dust in the Martian air cools the surface during the day and emits long-wave radiation that warms the surface at night.

Story Source:
The above story is based on materials provided by University of Alabama Huntsville. Note: Materials may be edited for content and length.